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The stability of two-layer thermal convection in high-Prandtl-number fluids is inves-
tigated using laboratory experiments and marginal stability analysis. The two fluids
have different densities and viscosities but there is no surface tension and chemical
diffusion at the interface is so slow that it is negligible. The density stratification
is stable. A wide range of viscosity and layer depth ratios is studied. The onset of
convection can be either stationary or oscillatory depending on the buoyancy number
B, the ratio of the stabilizing chemical density anomaly to the destabilizing thermal
density anomaly: when B is lower than a critical value (a function of the viscosity
and layer depth ratios), the oscillatory regime develops, with a deformed interface and
convective patterns oscillating over the whole tank depth; when B is larger than this
critical value, the stratified regime develops, with a flat interface and layers convecting
separately. Experiments agree well with the marginal stability results. At low Rayleigh
number, characteristic time and length scales are well-predicted by the linear theory.
At higher Rayleigh number, the linear theory still determines which convective regime
will start first, using local values of the Rayleigh and buoyancy numbers, and which
regime will persist, using global values of these parameters.

1. Introduction
In contrast to the Rayleigh–Bénard problem for one fluid, instability in two chemi-

cally stratified fluid layers can be either steady or oscillatory (Richter & Johnson 1974),
as for the closely related and well-documented case of double-diffusive convection
(e.g. Veronis 1968; Turner 1979; Hansen & Yuen 1989). But the number of parameters
involved in this problem is large and there exists no comprehensive picture of the
domains in which a given regime prevails.

The steady case, where the interface remains flat and convection develops in
two superimposed layers, has been extensively studied, because of its suggested
occurrence in the Earth’s mantle (Richter & McKenzie 1981; Busse 1981; Cserepes &
Rabinowicz 1985; Ellsworth & Schubert 1988; Cserepes, Rabinowicz & Rosemberg-
Borot 1988; Sotin & Parmentier 1989). Rasenat, Busse & Rehberg (1989) showed
that an oscillatory two-layer regime could also develop, involving no deformation
of the interface, with a convective pattern oscillating between viscous and thermal
coupling: experimental studies of this configuration has been performed by Busse &
Sommermann (1996) and Andereck, Colovas & Degen (1996). However, studies of
the oscillatory regime where the interface deforms and convection develops over the
whole depth of the tank have been limited to cases where the physical properties of
the two fluids (viscosity, thermal diffusivity, thermal expansivity) are equal (Richter
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& Johnson 1974; Schmeling 1988) or nearly equal (Renardy & Joseph 1985; Renardy
& Renardy 1985).

One question that remains open is the fate of the oscillatory regime when the
viscosity contrast between the two layers varies by several orders of magnitude. The
answer to this question could provide valuable insight into the dynamics of the Earth’s
mantle where large viscosity variations are expected and the type of convection (‘two-
layered’ or ‘whole-mantle’) is still controversial (Olson, Silver & Carlson 1990; Tackley
2000). Motivated by this geophysical interest, laboratory experiments have recently
been performed to investigate the influence of the viscosity contrast on two-layer
thermal convection at high Rayleigh and Prandtl numbers (Davaille 1999a, b; Le
Bars & Davaille, in preparation). The two fluids were miscible in the sense that
there was no surface tension at the interface. Depending on the buoyancy number
B, the ratio of the stabilizing chemical density anomaly to the destabilizing thermal
density anomaly, two regimes were observed: for B > 1, thermal convection develops
in two superimposed layers, separated by a thermal boundary layer at a relatively
undeformed interface, while for B < 0.35− 0.55, the interface deforms in large domes
which move up and down quasi-periodically.

Here, we use marginal stability analysis and laboratory experiments to investigate
further the stability and occurrence of the two thermochemical regimes, as a function
of the viscosity, depth and density ratios between the two fluids: our purpose is to
determine for each case the onset of convection and the prevailing regime. Section 2
sets up the problem formally and presents the results of the marginal stability analysis.
In § 3, these results are first compared with experiments at low Rayleigh number, and
then used to determine the stability of two-layer systems at higher Rayleigh number.

2. Marginal stability analysis
2.1. Analytical formulation

In the two-dimensional x, z space, we consider two superimposed layers of fluids,
respectively of densities ρ10

and ρ20
, kinematic viscosities ν1 and ν2 (dynamic viscosi-

ties η1 and η2), and depth d1 and d2 (figure 1a). Only the case where the density
stratification is stable is studied, so that the heavier fluid is at the bottom. All the
physical properties of the two fluids are taken to be equal, except their densities and
viscosities. There is neither surface tension nor chemical diffusion at the interface
between the two fluids. The lower and upper planes are held at uniform temperatures
T1 and T2 respectively. Each plane is assumed to be a perfect thermal conductor,
and the kinematic condition on those boundaries is either traction-free, for compari-
son with previous work, or rigid (zero horizontal velocity) for comparison with the
experiments. Unless specified, numerical values presented in this paper are for rigid
boundaries.

To non-dimensionalize the problem, we use the length scale d = d1 + d2, the total
thickness of fluid, and the temperature scale ∆T = T1 − T2, the total temperature
difference. In this study, we aim to determine the occurrence of the oscillatory regime,
where the interface deforms in large domes (Davaille 1999b): we thus choose a velocity
scale characteristic of this problem, namely the Stokes velocity of a dome developing
from layer 1 into layer 2: v = αg∆Td2/ν2, where α is the thermal expansivity and g
the acceleration due to gravity. The time scale is given by d/v = ν2/αg∆Td, and the
viscous pressure scale by η2v/d = αρ20

g∆Td. In the following, all the variables are
non-dimensionalized using these scales.
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Figure 1. Configuration of the problem: (a) set-up, (b) linear temperature profile, (c) chemical
density profile and (d ) effective density profile, taking into account thermal and chemical effects.

We study the linear stability of the static solution, which exhibits a linear tempera-
ture profile (figure 1b):

T =
T1

∆T
− (z + a), (2.1)

where a = d1/d. Let θi and pi be the deviations of the temperature and pressure from
their static distribution, and ui be the velocity vector. Assuming that thermal effects
and chemical density contrast are small, the fluids are considered incompressible,
except for buoyancy terms (Boussinesq approximation). In a first-order approximation,
the equation of state used within each layer i is thus

ρi(T ) = ρi0 − αρ0(T∆T − T0), (2.2)

where ρ0 = (ρ10
+ ρ20

)/2. We obtain for each layer i a dimensionless form of the
equations governing the motion:

∇ · ui = 0, (2.3)

Ra

Pr

(
∂

∂t
+ ui · ∇

)
ui = −∇pi + θik +

νi

ν2

∇2ui, (2.4)

Ra

[(
∂

∂t
+ ui · ∇

)
θi − ui · k

]
= ∇2θi. (2.5)

The vertical unit vector k is directed opposite to gravity. The Rayleigh and Prandtl
numbers are defined by

Ra =
αg∆Td3

κν2

and Pr =
ν2

κ
,

where κ is the thermal diffusivity. We also define the viscosity ratio between the two
layers γ = ν1/ν2. Since we are interested in the onset of infinitesimal disturbances,
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the nonlinear terms (ui · ∇)ui and (ui · ∇)θi are negligible. Furthermore, we restrict
our attention to the case of infinite Prandtl number, relevant to the Earth’s mantle.
Then, taking twice the curl of (2.4), and using (2.5) to eliminate the temperature, one
obtains for the vertical velocity wi:(

Ra
∂

∂t
− ∇2

)
∇4w1 = −Ra

γ

∂2w1

∂x2
, (2.6a)

(
Ra

∂

∂t
− ∇2

)
∇4w2 = −Ra

∂2w2

∂x2
. (2.6b)

The outer boundary conditions are in each layer (z = −a and z = 1− a):
w =

∂w

∂z
= 0 for a rigid boundary, (2.7a)

w = ∇2w = 0 for a free boundary, (2.7b)

and θ = 0 which yields

∇4w = 0. (2.8)

The equilibrium position of the interface between the fluids is assumed to be z = 0.
Distortions of the interface from this position are described by the function h(x, t).
Assuming that those distortions are small, a Taylor expansion around z = 0 is used
to obtain the linearized interfacial conditions (see Joseph & Renardy 1993 for the
complete derivation):

The kinematic condition for the material interface yields

w1 =
∂h

∂t
. (2.9)

Continuity of velocity and incompressibility yield

w1 = w2, (2.10)

∂w1

∂z
=
∂w2

∂z
. (2.11)

Continuity of shear stress yields

γ
∂2w1

∂z2
− ∂2w2

∂z2
= γ

∂2w1

∂x2
− ∂2w2

∂x2
. (2.12)

Continuity of normal stress yields

p1 − 2γ
∂w1

∂z
= p2 − 2

∂w2

∂z
+ Bh, (2.13a)

where B is the buoyancy number, the ratio of the stabilizing chemical density anomaly
to the destabilizing thermal density anomaly:

B =
ρ10
− ρ20

αρ0∆T
.

Taking ∂3/∂t∂x2 of (2.13a) and eliminating pi with (2.4) and h with (2.9), we obtain

∇2 ∂2

∂t∂z
(γw1 − w2) + 2

∂4

∂t∂z∂x2
(γw1 − w2) = −B∂

2w1

∂x2
. (2.13b)
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Continuity of temperature yields

θ1 = θ2 ⇒ γ∇4w1 = ∇4w2. (2.14)

Continuity of heat flux yields

∂θ1

∂z
=
∂θ2

∂z
⇒ γ∇4 ∂w1

∂z
= ∇4 ∂w2

∂z
. (2.15)

Because we used a scaling characteristic of interface deformation, the buoyancy
number B appears in (2.13). Other studies using the classical thermal diffusive scaling
(Richter & Johnson 1974; Joseph & Renardy 1993) lead to the appearance of Rs,
Rayleigh number based on the chemical density difference:

Rs =
(ρ10
− ρ20

)gd3

κη2

. (2.16)

These two numbers are simply linked by the relation

Rs = RaB. (2.17)

Analysing the problem in terms of normal modes, the solution is sought in the
form

w(x, z, t) = W (z) exp(ikx+ st) with s = σ + iω. (2.18)

Hence, W (z) is solution of the following equations:
for 0 > z > −a,

(sRa + k2 −D2)(D2 − k2)2W1 = k2 Ra

γ
W1, (2.19a)

for 1− a > z > 0,

(sRa + k2 −D2)(D2 − k2)2W2 = k2RaW2, (2.19b)

where D stands for d/dx. The general solution of (2.19) is
for 0 > z > −a,

W1 =
∑

16j63

A1j exp(q1j(a+ z)) + B1j exp(−q1j(a+ z)), (2.20a)

for 1− a > z > 0,

W2 =
∑

16j63

A2j exp(q2j(1− a− z)) + B2j exp(−q2j(1− a− z)). (2.20b)

The coefficients qij are solutions of the equations:
for 0 > z > −a,

(sRa + k2 − q2
1j)(q

2
1j − k2)2 =

Ra

γ
k2, (2.21a)

for 1− a > z > 0,

(sRa + k2 − q2
2j)(q

2
2j − k2)2 = Rak2, (2.21b)

and the twelve constants Aij and Bij are determined by the six matching conditions
at the interface (2.10)–(2.15) and the six outer boundary conditions (2.7)–(2.8). Those
conditions represent an homogeneous system of equations for Aij and Bij . Non-zero
solutions exist if the determinant of the coefficient matrix (given in the Appendix)
vanishes. The system thus represents a transcendental equation relating a, γ, B, Ra , k
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and complex s, that must be solved numerically. Since the problem defined above is
not self-adjoint, the determinant and the eigenvalues can be complex, and the onset
of convection can be oscillatory as well as stationary. Moreover, the equations are
identical on interchanging (γ, a) and (1/γ, 1 − a). So only results for γ > 1 will be
presented, which means that the lower layer will always be the more viscous. This is
also the situation encountered in our laboratory experiments.

2.2. Results for marginal stability

Looking for the marginal stability, we assume that σ = 0 and thus s reduces to iω.
For fixed values of the parameters a, γ and B, the roots of the determinant are sought
in the (k, ω,Ra) space, using the Nelder–Mead simplex method (Nelder & Mead
1965). In each case, the critical Rayleigh number is the minimum value of Ra as the
wavenumber k is varied.

2.2.1. Accuracy of the method

The convergence of the computer code was checked for the case γ = 1. For
layers of equal properties, there are two situations identical to the classical Rayleigh–
Bénard problem in one fluid. The eigenvalues for those cases are real, and given by
Chandrasekhar (1961):

(a) when there is no density jump at the interface (B = 0), convection occurs
throughout the whole layer with Rac = 657.51 and k = 2.22 for free boundaries and
Rac = 1707.76 and k = 3.12 for rigid boundaries;

(b) when a = 0.5, the most unstable two-layer mode, which has zero vertical velocity
at the interface, corresponds in each layer to Rayleigh–Bénard convection with a free
boundary condition at the interface; it occurs, with our notation, at Rac = 10520.16
and k = 4.43 for free boundaries, and at Rac = 17610.39 and k = 5.365 for rigid
boundaries (corresponding respectively to Rac = 657.51 and Rac = 1100.65 if the
characteristic scales are taken to be those of one layer).

The more general case encountered throughout the (B,Ra) parameter space for
γ = 1 and a = 0.5 has already been solved by Richter & Johnson (1974) for free
boundaries. There, the eigenvalues are either real or complex, producing respectively
either steady stratified convection or oscillatory instabilities. Our computer code
reproduces exactly their numerical results.

2.2.2. Dependence on B

Figure 2 shows the stability diagram of the system for a given (γ, a) and figure 3
the corresponding interface velocity, horizontal wavelength (λ = 2π/k) and temporal
frequency. Depending on B, instability sets in under two different regimes:

(a) Stratified regime: for B greater than a critical value Bc(γ, a), the most unstable
mode has a zero vertical velocity at the interface (figure 3a); convection develops
above and below the interface with a wavelength comparable to one layer depth
(figure 3b); motions are steady (figure 3c). The interface remains at its equilibrium
position h = 0, and the stability of the stratified regime is independent of B (figure 2),
as expected from (2.13a). The vertical velocity is maximum in the less viscous fluid,
whereas in the other fluid motions are delayed and much slower: the less viscous
layer is thus active, and the more viscous one passively driven by viscous coupling at
the interface.

(b) Oscillatory regime: for B smaller than Bc(γ, a), the vertical velocity is maximum
at the interface (figure 3a) and the pulsation is non-zero (figure 3c); the interface
deforms and oscillatory motions develop over the whole box depth (figure 3b). This
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Figure 2. Neutral curves of marginal stability analysis in the case γ = 6.7, a = 0.5. Dash-dotted line
corresponds to the stratified regime and circles to calculated points of the oscillatory regime (the
solid line represents the fit according to 2.25b). The bold solid line follows the most unstable regime:
in the dark grey domain, no convection develops, whereas in the white domain, the oscillatory regime
is the most unstable and in the light grey domain, the stratified regime is the most unstable. The
square shows the measured value of experiment 47.

oscillatory instability sets in since the density at the bottom of the lower layer is
smaller than the density of the upper layer in spite of the stabilizing jump across the
interface (and/or the density at the top of the upper layer is higher than the density
of the lower layer). From (2.1) and (2.2),

ρi = ρi0 − αρ0∆T

(
T1 − T0

∆T
− (z + a)

)
. (2.22)

Thermal effects reverse the chemical density contrast when

ρ1(z) = ρ2(0)⇔ z = −B (provided B 6 a) (2.23a)

and

ρ2(z) = ρ1(0)⇔ z = B (provided B 6 1− a). (2.23b)

Thus a Rayleigh–Taylor-type overturning instability operates throughout part of
the cycle (figure 1d ), while dissipative effects (viscous forces and thermal diffusion)
together with the stabilizing density contrast across the interface lead to a restoring
force throughout the remainder of the cycle. These oscillatory motions can take the
form of standing waves if the horizontal dimension of the cell is a multiple of the
horizontal wavelength of the flow; otherwise, travelling waves develop. Their critical
Rayleigh number increases with B, since the restoring force due to the stable density
contrast becomes bigger (figure 2). For the closely related double-diffusive convection
case where for example a layer of water with a stabilizing linear salt gradient is heated
from below (Veronis 1968; Baines & Gill 1969), the critical Rayleigh number Rac
scales as

Rac = Ra0 + Rs, (2.24)

where Rs is the Rayleigh number based on the total chemical density contrast. The
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Figure 3. (a) Ratio of vertical interface velocity to maximum vertical velocity, (b) half horizontal
wavelength (λ/2 = π/k) and (c) temporal frequency for the case γ = 6.7, a = 0.5. Dash-dotted
line corresponds to the stratified regime, solid line to the oscillatory regime, and the bold solid line
follows the most unstable regime. In the white domain, the oscillatory regime is the most unstable
and in the light grey domain, the stratified regime is the most unstable. Squares show measured
values of experiment 47.

system is destabilized when there is enough energy to overcome viscous and thermal
diffusion effects as in classical Rayleigh–Bénard convection (Ra0) and to reverse
the stabilizing salt gradient (Rs). Although we have a chemical density jump at the
interface instead of a linear salinity gradient, we find a similar dependence and the
results are well-fitted by

Rac = Ra0 + βRs, (2.25a)

where β is a constant. Using (2.17),

Rac =
Ra0

1− B/Blim , (2.25b)
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Figure 4. Active layer in the stratified regime. The solid line shows the effective transition and the
dashed line corresponds to Ra1 = Ra2.

where Blim = 1/β (figure 2). The two constants entering (2.25b) are function of a
and γ. Blim(γ, a) corresponds to the point where the chemical stratification becomes
too important to be reversed by any thermal effect, and so the oscillatory regime
disappears (Rac → ∞). Ra0(γ, a) corresponds to the limit where B tends towards 0,
and the oscillatory mode transforms itself into the classical steady (ω → 0) whole
layer mode with a viscosity jump, since no chemical stratification acts against the
thermal destabilization.

2.2.3. Influence of a and γ

(a) Stratified regime: the stratified regime is independent of the buoyancy ratio B.
Therefore, the individual Rayleigh numbers of each layer are helpful to describe the
dynamics:

Ra1 =
a4

γ
Ra and Ra2 = (1− a)4Ra . (2.26)

When the two layers have the same thickness (a = 0.5), the onset of convection
is determined by the layer with the greater Rayleigh number, as already shown by
Rasenat et al. (1989). When the depth ratio a 6= 0.5, the active layer (i.e. where the
velocity is maximum) is not always the one with the higher Rayleigh number Rai, for
it is easier for a viscous layer to entrain a less viscous layer than the reverse (figure 4).

In all cases, the convective motion wavelength is, at first order, proportional to
the thickness of the active layer (figure 5b). Convection in the other layer is passive,
being viscously driven only, and becomes more and more sluggish as the viscosity
ratio increases. As γ becomes infinite (typically γ > 100), the more viscous layer
behaves almost rigidly, and the critical Rayleigh number of the system increases
towards an asymptotic value which corresponds to a layer of fluid below a slab of
finite conductivity (Nield 1968) (figures 6a and 6c).

According to marginal stability analysis, the coupling between the two layers is
always viscous, irrespective of the vertical temperature profile. For γ = 1 and a = 0.5,
the temperature perturbation changes sign at the interface z = 0. As γ increases, the
depth where the temperature perturbation θ changes sign moves into the most viscous
layer, so that for a = 0.5 and γ > 5, the vertical temperature profile is correlated over
the whole depth (a situation usually encountered when the two layers are ‘thermally
coupled’) although the motions in the layers are still viscously coupled. To reconcile
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Figure 5. (a) Critical Rayleigh number and (b) half-wavelength as a function of the layer depth
ratio for a fixed value of the viscosity ratio (γ = 10). Dash-dotted lines correspond to the stratified
regime, dashed lines to the oscillatory regime when B = 0.10 and solid lines to the steady whole-layer
regime (B = 0). The dotted line represents the fit according to (2.30a): in the case γ = 10, ‘vertical’
oscillations are predominant for almost all values of the layer depth ratio and the simple law (2.30a)
reproduces numerical results within 30%.
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Figure 6. (a, c) Critical Rayleigh number and (b, d ) half-wavelength as a function of the viscosity
ratio for fixed values of the layer depth ratio. Dash-dotted lines correspond to the stratified regime,
dashed lines to the oscillatory regime when B = 0.10 and solid lines to the steady whole-layer
regime (B = 0). The dotted line represents the fit according to (2.30a): in the case a = 0.75, ‘vertical’
oscillations take place for γ < 103 and the simple law (2.30a) reproduces numerical results within
30%; on the other hand, for a = 0.25, ‘horizontal’ oscillations take place very rapidly and (2.30a)
therefore is of no use for γ > 10.



Stability of thermal convection in two superimposed miscible viscous fluids 349

‘Vertical’
oscillations

(a)

104102100
10–1

102

B

0.8

0.4

0.2

0.6

100 101 103

101

100

ç

ç

103

‘Horizontal’
oscillations

B = Blim

B = a

102 104

a

(b)

Figure 7. (a) Blim as a function of the viscosity ratio for a = 0.75; the white domain corresponds
to oscillations with an unstable whole-layer density profile (B < a or B < 1 − a) and the hatched
domain to oscillations with a stable whole-layer density profile (B > a and B > 1 − a). In the
grey domain, oscillations are impossible. (b) Contour plot of Blim; the dashed line follows the
discontinuity observed in (a).

the viscous coupling at the interface with the vertical thermal structure where the
temperature perturbation does not change sign throughout the whole tank depth, a
third roll sometimes appears in the passive layer. For finite-amplitude perturbations
or well above criticality, it is thus expected that both temperature and motions will
be thermally coupled for γ > 5. This has been seen experimentally by Rasenat et al.
(1989) and in finite-amplitude calculations by Cserepes et al. (1988).

(b) Oscillatory regime: depending on the value of γ, two types of oscillations can
appear, corresponding to two different mechanisms. When the viscosity contrast is not
too high, oscillations are due to the opposite effects of chemical and thermal density
anomalies, as previously described: the whole-layer density profile is unstable for all
values of B < Blim (figure 7), and a Rayleigh–Taylor overturn takes place, leading
to convection over the whole depth (figure 8a). As a result, the interface velocity
is high (figure 9) and the horizontal wavelength comparable to the tank thickness
(figures 5b, 6b and 6d ). These whole depth convective oscillations will be referred to
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Figure 8. Sketch of streamlines in the case of (a) ‘vertical’ oscillations, (b) ‘horizontal’ oscillations
and (c) stratified regime.

as ‘vertical’ oscillations. In this case, it is interesting to define an equivalent viscosity
of the two-fluid system, for instance

νeq ∼ νa1 × ν1−a
2 (2.27)

and an equivalent Rayleigh number

Raeq = Ra
ν2

νeq
∼ Ra × γ−a. (2.28)

When chemical effects vanish (B = 0), convection in the two-layer system is iden-
tical to the classical convection in the one-fluid equivalent system: according to
Chandrasekhar (1961), the onset is defined by

Raeq = 1707.76. (2.29)

This means for the two-layer system

Ra0 ∼ 1707.76× γa (2.30a)

and using (2.25b),

Rac ∼ 1707.76

1− B/Blim × γ
a. (2.30b)

Although the values of Ra0 calculated from the complete resolution of (2.7)–(2.21)
span over two orders of magnitude, (2.30a) predicts them within 30% (figures 5a
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Figure 9. Ratio of vertical interface velocity to maximum vertical velocity (a) for two fixed values
of layer depth ratio and (b) over the whole range of viscosity and layer depth ratios. The dashed
line corresponds to Blim = max(a, 1− a): low interface velocities are systematically associated with
stable whole-layer density profiles.

and 6c). The approximations (2.30a) and (2.30b) are valid when ‘vertical’ oscillations
occur, i.e. in the domain of (γ, a) outlined on figure 9(b).

On the other hand, when the viscosity ratio increases, the interface acts like a
barrier: vertical motions are deflected, and the streamlines become more and more
concentrated in the less viscous layer (figure 8b). This behaviour is reminiscent of
thermal convection in a fluid whose viscosity depends strongly on temperature, where
convection occurs in a sublayer over which the viscosity ratio is less than 100 (Stengel,
Olivier & Broker 1982; Richter, Nataf & Daly 1983; Davaille & Jaupart 1993). The
wavelength of the convective pattern thus decreases from a value comparable to the
full thickness of the tank to a value comparable to the thickness of layer 2 (figures 6b
and 6d ): convection does not develop over the whole depth but only in the less
viscous layer, the more viscous one being slightly perturbed by thermal coupling at
the interface. The system thus tends towards the previously described stratified regime
where the less viscous fluid is the active layer: the critical Rayleigh number smoothly
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increases towards the asymptotic value for the stratified regime (figures 6a and 6c),
while the time frequency of the oscillations tends towards 0. Moreover, the maximum
vertical velocity scales as the typical convective velocity in layer 2

Vmax ∼ αg∆T2d
2
2

ν2

, (2.31)

where ∆T2 is the temperature difference across layer 2, whereas the interface velocity
is limited by the penetration of this thermal instability in the viscous layer, thus
scaling as

Vinterface ∼ αg∆T2d
2
2

ν1

. (2.32)

As a result, the ratio Vinterface/Vmax rapidly decreases as γ−1 (figure 9a). Simultaneously,
Blim significantly increases and becomes larger than a and 1−a: oscillations are poss-
ible with a stable whole-layer density profile (figure 7). Oscillations still exist because
of the opposite effects of thermal and viscous coupling that decorrelate horizontal
motions around the interface. The mechanism of these ‘horizontal’ oscillations is thus
comparable to the oscillatory coupling instabilities described by Rasenat et al. (1989)
in the absence of interface deformation.

The transition between ‘vertical’ and ‘horizontal’ oscillations is continuous for
a 6 0.5 (figures 6a and 6b). In this case, motion in the less viscous thicker layer
slightly precedes motion in the other one: it thus initiates oscillations, which are
progressively confined as γ increases. For a > 0.5, the transition is sharp (figures 6c
and 6d ). ‘Vertical’ oscillations are first initiated by the viscous thicker layer, but as γ
increases, this fluid becomes too rigid to move: ‘horizontal’ oscillations initiated by
the other fluid then take place.

When a tends towards 0 or 1, the proximity of the outer boundary prevents the
interface from oscillating, and the oscillatory mode transforms itself into the classical
steady (ω → 0) one-layer mode. As shown in figure 5, the wavenumber tends towards
3.12, corresponding to λ/2 ≈ 1, whereas Rac tends towards 1707.76 for a → 0 and
towards 1707.76× γ for a→ 1 (because our scaling uses the viscosity of layer 2).

2.3. Development of the oscillatory regime

Besides marginal stability, it is also interesting to determine the behaviour of the most
unstable oscillatory mode for given γ, a, B, Ra . In this case, the roots of the deter-
minant are now sought in the (σ, ω) space, the wavenumber k being fixed to the value
determined by marginal stability. Starting from the neutral curve and increasing Ra ,
we observe that the growth rate σ progressively increases, whereas the frequency of
the oscillations ω rapidly decreases and finally vanishes for Ra > Ra lim(B) (figure 10):
thermal effects are then high enough permanently to reverse the chemical stratifica-
tion, and the oscillatory regime is transformed into a steady whole-layer mode, as
already noted when B = 0.

3. Laboratory experiments
3.1. Experimental set-up

We performed laboratory experiments in which two superimposed layers of viscous
fluids, initially isothermal at T0, are suddenly cooled from above and heated from
below. The fluids are mixtures of water, salt for density control and cellulose for
viscosity control. The density, viscosity and depth of each fluid as well as the boundary
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γ a B Ra

1 to 6× 104 0.03 to 0.97 0.048 to 4.4 6.7× 103 to 6.1× 108

±50% ±5% ±1% ±25%

Table 1. Range and accuracy of experiments dimensionless numbers.
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Figure 10. Development of the oscillatory regime in the case γ = 6.7, a = 0.5. (a) Evolution of the
temporal periodicity ω (solid line) and the growth rate σ (dashed line) when Ra is progressively
increased from the marginal stability value at B = 0.20. (b) Boundary between oscillatory and
whole-layer regimes: the solid line corresponds to the neutral curve of the oscillatory regime and the
dashed line to Ra = Ra lim(B). The neutral curve of the stratified regime is also reported (dash-dotted
line).

temperatures are measured for each experiment, in order to determine the character-
istic dimensionless numbers. Variation ranges and accuracy are listed in table 1. The
only major uncertainty comes from the viscosity measurements (accuracy of 25%).
However, as demonstrated by the linear study, changes in γ over the error range
have a minor influence on the dynamics. Prandtl numbers in each layer are always
greater than 100 to ensure that inertial effects are non-existent (Krishnamurti 1970).
The liquids are miscible in all proportions and the temperature-dependence of the
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Exp.
number γ a B Bc Ra Rac(B) Ra lim(B) Behaviour

2 12.5 0.5 0.26 0.28 2.2× 104 2.1× 104 3.3× 104 osc.
3 12 0.5 0.18 0.28 5.2× 104 1.4× 104 3.0× 104 whole layer
7 149 0.75 0.24 0.25 4.2× 105 2.9× 105 4.3× 105 osc.

45 1.3 0.44 0.10 0.32 6.8× 103 2.7× 103 6.6× 103 whole layer
46 1.1 0.44 0.048 0.32 6.7× 103 2.0× 103 4.0× 103 whole layer
47 6.7 0.5 0.20 0.30 1.8× 104 1.1× 104 2.8× 104 osc.

Table 2. Dimensionless parameters and behaviour of the experiments close to marginal stability.
Bc and Rac(B) are the theoretical values of critical buoyancy and Rayleigh numbers; Ra lim(B) is
the calculated value where oscillations are replaced by steady whole-layer convection (see § 2.3).

viscosity is negligible compared to its composition-dependence. The high viscosities
render diffusion of salt across the interface extremely slow compared to the character-
istic time scale of the instabilities (Davaille 1999a). Moreover, to be able to compare
the experimental results with the linear stability analysis, we consider here only the
experiments where the initial density stratification is sharp. Heat and mass transfer
are monitored over time by measuring temperature profiles and the densities of both
layers. More details can be found in Davaille (1999a).

Since the fluids are miscible in all proportions, slow mixing by mechanical en-
trainment occurs through the interface and the characteristics of convection (thermal
structure, regime, etc.) evolve through time, from two-layer to classical Rayleigh–
Bénard convection. However, typical mixing times are at least one order of magnitude
greater than thermochemical time scales. We focus hereafter on the early stages of
the experiments.

3.2. Close to marginal stability

Six of our experiments were close to marginal stability (see table 2). Since the strati-
fied case is well-documented (Richter & McKenzie 1981; Busse 1981; Cserepes &
Rabinowicz 1985; Ellsworth & Schubert 1988; Cserepes et al. 1988; Sotin & Parmen-
tire 1989), we concentrated on the oscillatory regime. The onset of all experiments is
always the same. First a linear temperature profile progressively sets in the tank by
heat diffusion: the thermal structure at onset is thus exactly the same as our theoreti-
cal study. Provided Ra > Rac(B), convection then begins and the interface deforms
in large domes with a horizontal wavelength comparable to twice the tank depth
(figure 11a), as predicted by the marginal stability analysis (figure 3b and table 3).
These domes progressively rise, and finally reach the cold plate where they begin to
cool down and become heavier. Two behaviours can then occur:

(i) When domes do not spread under the cold plate, no large-scale stirring operates:
the two fluids remain separate, and oscillations begin (figure 11b). Large temperature
variations are recorded. Their periodicities are in good agreement with the theory
(figure 3c and table 3). Only travelling waves are observed, because the horizontal
dimension of our tank is not a multiple of the horizontal wavelength of the flow
(tank 30 cm wide for typical periodicities of 12 cm or 16 cm).

(ii) When domes spread under the cold plate, stirring operates from the first
oscillation: fluid 1 sinks back while entraining part of the other fluid, leading to a
spiral pattern (figure 11c). Steady convection thus takes place over the whole depth
of the tank. However, we observed in oscillatory experiments that the temperature
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Figure 11. (a) Onset of convection, characteristic of all experiments close to marginal stability.
(b) Picture and vertical temperature signal of experiment 47, where travelling waves were observed
during more than 24 hours and (c) the same for experiment 46, where whole-layer convection took
place. Positions of the vertical thermocouples (in cm) are reported in the right of the temperature
signals and triangles show the time when photos were taken.
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Exp.
number λe/2 λms/2 ωe ωms

2 1.1 1.1 8.5× 10−4 7.8× 10−4

3 1.1 1.1 9.0× 10−4 9.3× 10−4

7 1.0 0.98 8.4× 10−5 7.6× 10−5

45 0.91 1.0 3.4× 10−3 3.6× 10−3

46 0.93 1.0 3.3× 10−3 3.1× 10−3

47 1.0 1.1 1.3× 10−3 1.5× 10−3

Table 3. Horizontal wavelengths and temporal frequencies of the experiments close to marginal
stability. Subscript e stands for experimental values, and ms for marginal stability. Temporal
frequencies are determined using the temperature signal in the tank; for spiral patterns, a virtual
period is deduced from the first half of the oscillation (accuracy ±25%). Horizontal wavelengths
are determined using an horizontal temperature profile at the beginning of interface deformation
(accuracy ±10%).

signal is symmetrical (figure 11b): the time for domes to rise is equal to half a period.
So one can deduce from the temperature signal of steady whole-layer experiments
an extrapolated temporal periodicity, which also shows good agreement with the
theoretical value (table 3).

Which behaviour will actually prevail depends on the relative values of thermal
and chemical density anomalies, as already described in § 2.3: when thermal effects
are strong compared to chemical stratification (high Ra or small B), whole-layer
convection takes place instead of oscillations.

Care is required to extrapolate the linear study results to experiments, in particular
because of the theoretical assumption that the interface deformation remains small.
But it is noticeable that the mode excited in these experiments is exactly the one
determined by the marginal stability analysis. Moreover, the further development of
the selected mode is also predicted: the calculated values of Ra lim separating whole-
layer convection from oscillations are in good agreement with observations (table 2).
This was also observed by Schmeling (1988) in numerical simulations for γ = 1,
a = 0.5 (figure 12).

3.3. Stability of two-layer convection

When the Rayleigh number is high compared to the critical value, finite-amplitude
effects are so important that typical scales of convection can no longer be derived
from the marginal stability analysis. However, the two convective regimes are still
observed (Olson & Kincaid 1991; Davaille 1999b): we can thus use the linear theory
to solve two problems for each experiment, namely which regime develops first and
which regime remains once the temperature gradient is established.

3.3.1. Onset of instability

The thermal structure at t = 0 in our tank is different from the initial linear tempera-
ture profile of the marginal stability: in the experiments, the two fluids are initially
at the same temperature T0, and then suddenly heated from below and cooled from
above. Thermal boundary layers subsequently grow symmetrically from the hot and
cold plates, until the first convective feature appears. We observed two types of onset:

(a) the deformation of the interface over a large scale (several centimetres), corre-
sponding to the oscillatory regime;

(b) the appearance of small (less than one centimetre) short-lived plumes coming
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Figure 12. Numerical simulations by Schmeling (1988) for γ = 1, a = 0.5: squares correspond to
whole-layer convection, the star to the stratified regime, the circle to oscillations and triangles to no
convection. Results of the linear study are also reported: the dash-dotted line corresponds to the
stratified regime, the solid line to the oscillatory regime. The bold solid line follows the most unstable
regime and the dashed line Ra = Ra lim(B).

from the destabilization of one of the outer thermal boundary layers (Olson 1984;
Davaille 1999a). Those plumes correspond to thermal convection in a sublayer, and
thus to the stratified regime.

In order to follow the evolution of the experiment during the setting of the
temperature gradient, we can calculate an effective Rayleigh number based on the
typical length scale of thermal effects

Raeff =
αg∆T (2δ)3

κν2

= Ra

(
2δ

d

)3

, (3.1)

where δ is the theoretical size of a thermal boundary layer growing by conduction.
Since the chemical stratification is already established over the whole tank depth
(fixed Rs), the corresponding effective buoyancy number is

Beff =
Rs

Raeff

= B

(
d

2δ

)3

. (3.2)

In the (B,Ra) space, the experiment thus follows the curve

Raeff = Ra
B

Beff

, (3.3)

and the onset of convection is determined by the first intersection of this curve with
the curve of marginal stability (figure 13). The oscillatory regime can be triggered
when Ra > Rac(B), and the intersection corresponds to

Raeff = Rac(Beff ). (3.4)

This means, using (2.25b),

Raeff = Ra0 +
B

Blim
Ra ⇔ δosc =

d

2

(
Ra0

Ra
+

B

Blim

)1/3

. (3.5)
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Figure 13. Onset of convection in the (B,Ra) space for γ = 6.7, a = 0.5. In the dark grey domain
no convection develops, whereas in the white domain the oscillatory regime sets in first and in the
light grey domain the stratified regime sets in first. The dashed lines represent the time evolution
of two possible experiments during the setting of the temperature gradient: the onset of convection
corresponds to their first intersection with the neutral curve of marginal stability (bold solid line).

The stratified regime can be triggered when Ra > Rastrat, and the intersection
corresponds to

Raeff = Rastrat ⇔ δstrat =
d

2

(
Ra strat

Ra

)1/3

. (3.6)

We can however notice that for very large values of layer Rayleigh number (Ra i > 105

typically), the corresponding thermal boundary layer will be destabilized before ‘seeing’
the interface and the second fluid, following Howard’s mechanism for purely thermal
plumes (Howard 1964): the onset will thus be given by

δstrat = di

(
1100.67

Ra i

)1/3

. (3.7)

Since the thermal boundary layer initially grows by conduction, the first convective
motion corresponds to the smallest δ. Depending on the relative value of B and Ra ,
this defines three different domains (figure 13):

no convection when Ra < Rastrat and Ra < Rac(B);
oscillatory regime sets in first when δosc < δstrat;
stratified regime sets in first when δosc > δstrat.

All experiments agree well with this model, independently of the relative value of
B and Bc (figure 14). The convective history of each experiment must thus be divided
into two independent steps: first, the temperature gradient is progressively established
over the tank depth, and effective values (Beff ,Raeff ) determine which regime starts
first; but as soon as this convective motion appears, (Beff ,Raeff ) are meaningless, and
global values (B,Ra) must be used.
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Figure 14. Observed onset for all experiments as a function of the ratio δosc/δstrat. Stars correspond
to experiments where small plumes start first (stratified regime), and circles to experiments where
large domes start first (oscillatory regime).
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Figure 15. Calculated Bc(γ, a) over the whole parameter space. The dashed line corresponds to
Blim = max(a, 1− a), thus to the limit between ‘vertical’ and ‘horizontal’ oscillations (see § 2.2.3).
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Figure 16. Observed persistent regime as a function of the ratio B/Bc. Experiments corresponding in
marginal stability to ‘vertical’ oscillations are shown by stars when the interface remains stable and
circles when the interface deforms in large domes (open circles denote experiments where domes
appear after a stratified onset). Experiments corresponding in marginal stability to ‘horizontal’
oscillations are shown by crosses when the interface remains stable and cross-circles when the
interface deforms in large domes. Numerical simulations by Schmeling (1988) are also reported in
grey.

3.3.2. Oscillatory whole-layer versus steady stratified regimes

According to the linear stability analysis, which thermochemical regime is the most
unstable depends on the relative value of the buoyancy number B and the critical
buoyancy number Bc(γ, a) (figure 2). In the experiments, once the convection has
begun, we can thus try to determine whether the interface will be deformed or not by
comparing the values of the experimental B and the theoretical Bc(γ, a) (figure 15).
Figure 16 shows for all experiments the nature of the observed regime depending on
the ratio B/Bc(γ, a). The agreement between theory and observations is quite good,
except for some points corresponding in marginal stability to ‘horizontal’ oscillations
(see § 2.2.3): this is due to the difficulty in extrapolating linear theory results to
experiments. We can reasonably suppose that ‘vertical’ oscillations characterized in
the linear study by high interface velocities and whole-layer instable density profiles
will effectively lead to the formation of large domes over the whole tank depth:
indeed, all corresponding experiments agree well with the theory. However, in the
case of ‘horizontal’ oscillations, which are due to opposite effects of viscous and
thermal coupling, the linear theory predicts low interface velocities as well as stable
whole-layer density profiles: a finite-amplitude study would thus be necessary to know
whether the predicted interface oscillations will give rise to an effective large-scale
deformation, but this is beyond the scope of this paper.

We can however notice that the theoretical Bc for ‘vertical’ oscillations varies in the
limited range 0.2–0.4 over the whole parameter space (figure 15). These typical values
also seem to be relevant for the experiments with large viscosity contrast and/or
a thin layer, where ‘vertical’ oscillations are observed experimentally for B between
0.093 and 0.33, whereas the interface remains stable for B larger than 0.32.
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4. Conclusion
The influence of a contrast in viscosity on the linear stability of two-layer thermal

convection in the presence of stable density stratification has been investigated.
Depending on the buoyancy number, the ratio of the stabilizing chemical density
anomaly to the destabilizing thermal density anomaly, two regimes are found: (i)
for B < Bc(γ, a), an oscillatory regime where vertical motion exists at the interface;
and (ii) for B > Bc(γ, a), a steady two-layer regime where there is no vertical motion
at the interface. Laboratory experiments agree well with this simple rule, even at
high Rayleigh number. In the experiments however, the initial convective regime
can be different from the final state, since the temperature gradient responsible for
the thermal density contrast is progressively imposed on initially isothermal fluids,
whereas the chemical density contrast is already present. During this transient state,
local values of the parameters must be used.

This study has focused on the early stages of the experiments, but since the fluids
are miscible, the characteristics of convection evolve through time. The description of
the stratified regime can be found in Davaille (1999a); the next problem is thus fully
to describe the behaviour of oscillatory domes as well as the mixing between the two
layers. It is however already apparent that even density contrasts smaller than 1%
can radically change the dynamics of convection, particularly if it is coupled with a
viscosity contrast.

This work benefited from fruitful discussions with George Veronis, Neil Ribe,
Claude Jaupart, Peter Molnar, Jeffrey Park and Harro Schmeling, and from the con-
structive comments of three anonymous reviewers. A. D. is grateful to Yale University
for its hospitality. This research has been supported by the French INSU programs
IDYL and IT. This is an IPGP contribution.

Appendix. Determinant for rigid boundaries
A homogeneous system of twelve equations in twelve unknowns is obtained by

substituting the expansions (2.20) into the boundary conditions (2.7)–(2.8) and (2.10)–
(2.15). The coefficient matrix is

1 0

±q1j 0

(q2
1j − k2)2 0

0 1

0 ±q2j

0 (q2
2j − k2)2

e±q1ja −e±q2j (1−a)

±q1j e±q1ja ±q2j e±q2j (1−a)

γ(q2
1j + k2) e±q1ja −(q2

2j + k2) e±q2j (1−a)

±q1jsγ(q
2
1j − 3k2) e±q1ja (±q2js(q

2
2j − 3k2)− k2B) e±q2j (1−a)

γ(q2
1j − k2)2 e±q1ja −(q2

2j − k2)2 e±q2j (1−a)

±q1jγ(q
2
1j − k2)2 e±q1ja ±q2j(q

2
2j − k2)2 e±q2j (1−a)
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Each column in this matrix actually corresponds to six columns: the coefficients of
the first column with the ‘+’ sign correspond to unknowns A1j , 1 6 j 6 3, and with
the ‘−’ sign to B1j , 1 6 j 6 3; the coefficients of the second column with the ‘+’ sign
correspond to A2j , 1 6 j 6 3, and with the ‘−’ sign to B2j , 1 6 j 6 3.
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